Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Front Mol Neurosci ; 17: 1268013, 2024.
Article En | MEDLINE | ID: mdl-38650658

The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.

2.
J Chem Theory Comput ; 20(6): 2630-2642, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38445482

The development of highly potent antibodies and antibody fragments as binding agents holds significant implications in fields such as biosensing and biotherapeutics. Their binding strength is intricately linked to the arrangement and composition of residues at the binding interface. Computational techniques offer a robust means to predict the three-dimensional structure of these complexes and to assess the affinity changes resulting from mutations. Given the interdependence of structure and affinity prediction, our objective here is to disentangle their roles. We aim to evaluate independently six side-chain reconstruction methods and ten binding affinity estimation techniques. This evaluation was pivotal in predicting affinity alterations due to single mutations, a key step in computational affinity maturation protocols. Our analysis focuses on a data set comprising 27 distinct antibody/hen egg white lysozyme complexes, each with crystal structures and experimentally determined binding affinities. Using six different side-chain reconstruction methods, we transformed each structure into its corresponding mutant via in silico single-point mutations. Subsequently, these structures undergo minimization and molecular dynamics simulation. We therefore estimate ΔΔG values based on the original crystal structure, its energy-minimized form, and the ensuing molecular dynamics trajectories. Our research underscores the critical importance of selecting reliable side-chain reconstruction methods and conducting thorough molecular dynamics simulations to accurately predict the impact of mutations. In summary, our study demonstrates that the integration of conformational sampling and scoring is a potent approach to precisely characterizing mutation processes in single-point mutagenesis protocols and crucial for computational antibody design.


Antibodies , Immunoglobulin Fragments , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Antibodies/chemistry , Mutation , Mutagenesis , Point Mutation , Protein Binding
3.
Pediatr Neurol ; 149: 84-92, 2023 Dec.
Article En | MEDLINE | ID: mdl-37820543

BACKGROUND: P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS: We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS: We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS: We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.


Neurodevelopmental Disorders , p21-Activated Kinases , Child , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/chemistry , p21-Activated Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Mutation, Missense
4.
Molecules ; 28(8)2023 Apr 13.
Article En | MEDLINE | ID: mdl-37110664

Neurodegeneration is a slow and progressive loss of neuronal cells or their function in specific regions of the brain or in the peripheral system. Among several causes responsible for the most common neurodegenerative diseases (NDDs), cholinergic/dopaminergic pathways, but also some endogenous receptors, are often involved. In this context, sigma 1 receptor (S1R) modulators can be used as neuroprotective and antiamnesic agents. Herein, we describe the identification of novel S1R ligands endowed with antioxidant properties, potentially useful as neuroprotective agents. We also computationally assessed how the most promising compounds might interact with the S1R protein's binding sites. The in silico predicted ADME properties suggested that they could be able to cross the brain-blood-barrier (BBB), and to reach the targets. Finally, the observation that at least two novel ifenprodil analogues (5d and 5i) induce an increase of the mRNA levels of the antioxidant NRF2 and SOD1 genes in SH-SY5Y cells suggests that they might be effective agents for protecting neurons against oxidative damage.


Neuroblastoma , Neuroprotective Agents , Receptors, sigma , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Ligands , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Receptors, sigma/metabolism
5.
Comput Biol Chem ; 103: 107819, 2023 Apr.
Article En | MEDLINE | ID: mdl-36657284

In the framework of the rational design of macromolecules capable of binding to a specific target for biosensing applications, we here further develop an evolutionary protocol designed to optimize the binding affinity of protein binders. In particular we focus on the optimization of the binding portion of small antibody fragments known as nanobodies (or VHH) and choose the hen egg white lysozyme (HEWL) as our target. By implementing a replica exchange scheme for this optimization, we show that an initial hit is not needed and similar solutions can be found by either optimizing an already known anti-HEWL VHH or a randomly selected binder (here a VHH selective towards another macromolecule). While we believe that exhaustive searches of the mutation space are most appropriate when only few key residues have to be optimized, in case a lead binder is not available the proposed evolutionary algorithm should be instead the method of choice.


Immunoglobulin Fragments , Single-Domain Antibodies , Animals , Immunoglobulin Fragments/genetics , Mutation , Single-Domain Antibodies/chemistry , Chickens
6.
Epilepsia ; 64(2): 443-455, 2023 02.
Article En | MEDLINE | ID: mdl-36318112

OBJECTIVE: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS: We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE: This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.


Epilepsy , Neurodevelopmental Disorders , Humans , Epilepsy/genetics , Mutation/genetics , Seizures/genetics , Kv1.6 Potassium Channel/genetics
7.
Methods Mol Biol ; 2552: 333-359, 2023.
Article En | MEDLINE | ID: mdl-36346602

Nanobodies (VHHs) are engineered fragments of the camelid single-chain immunoglobulins. The VHH domain contains the highly variable segments responsible for antigen recognition. VHHs can be easily produced as recombinant proteins. Their small size is a good advantage for in silico approaches. Computer methods represent a valuable strategy for the optimization and improvement of their binding affinity. They also allow for epitope selection offering the possibility to design new VHHs for regions of a target protein that are not naturally immunogenic. Here we present an in silico mutagenic protocol developed to improve the binding affinity of nanobodies together with the first step of their in vitro production. The method, already proven successful in improving the low Kd of a nanobody hit obtained by panning, can be employed for the ex novo design of antibody fragments against selected protein target epitopes.


Single-Domain Antibodies , Antibody Affinity , Single-Domain Antibodies/chemistry , Epitopes , Recombinant Proteins/genetics
8.
Immunol Res ; 71(1): 70-82, 2023 02.
Article En | MEDLINE | ID: mdl-36385678

High levels of human group IIA secreted phospholipase A2 (hGIIA) have been associated with various inflammatory disease conditions. We have recently shown that hGIIA activity and concentration are increased in the plasma of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) and negatively correlate with C1-INH plasma activity. In this study, we analyzed whether the presence of both hGIIA and C1-INH impairs their respective function on immune cells. hGIIA, but not recombinant and plasma-derived C1-INH, stimulates the production of IL-6, CXCL8, and TNF-α from peripheral blood mononuclear cells (PBMCs). PBMC activation mediated by hGIIA is blocked by RO032107A, a specific hGIIA inhibitor. Interestingly, C1-INH inhibits the hGIIA-induced production of IL-6, TNF-α, and CXCL8, while it does not affect hGIIA enzymatic activity. On the other hand, hGIIA reduces the capacity of C1-INH at inhibiting C1-esterase activity. Spectroscopic and molecular docking studies suggest a possible interaction between hGIIA and C1-INH but further experiments are needed to confirm this hypothesis. Together, these results provide evidence for a new interplay between hGIIA and C1-INH, which may be important in the pathophysiology of hereditary angioedema.


Angioedemas, Hereditary , Complement C1 Inhibitor Protein , Group II Phospholipases A2 , Humans , Interleukin-6 , Leukocytes, Mononuclear , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Complement C1 Inhibitor Protein/chemistry , Complement C1 Inhibitor Protein/metabolism , Group II Phospholipases A2/chemistry , Group II Phospholipases A2/metabolism
9.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article En | MEDLINE | ID: mdl-36499618

To extend our screening for novel antimycobacterial molecules, we have designed, synthesized, and biologically evaluated a library of 14 new hydrazide derivatives containing 1,3,4-oxadiazole core. A variety of mycobacterial strains, including some drug-resistant strains, were tested for antimycobacterial activity. Among the compounds tested, five showed high antimycobacterial activity (MIC values of 8 µg/mL) against M. tuberculosis H37Ra attenuated strain, and two derivatives were effective (MIC of 4 µg/mL) against pyrazinamide-resistant strains. Furthermore, the novel compounds were tested against the fungal C. albicans strain, showing no antimycotic activity, and thus demonstrating a good selectivity profile. Notably, they also exhibited low cytotoxicity against human SH-SY5Y cells. The molecular modeling carried out suggested a plausible mechanism of action towards the active site of the InhA enzyme, which confirmed our hypothesis. In conclusion, the active compounds were predicted in silico for ADME properties, and all proved to be potentially orally absorbed in humans.


Mycobacterium tuberculosis , Neuroblastoma , Humans , Antitubercular Agents/chemistry , Hydrazines/pharmacology , Microbial Sensitivity Tests , Neuroblastoma/drug therapy , Fungi , Structure-Activity Relationship , Molecular Docking Simulation
10.
Eur J Med Chem ; 243: 114781, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-36152385

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.


Janus Kinases , Suppressor of Cytokine Signaling Proteins , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/metabolism , Janus Kinases/metabolism , Signal Transduction , Cytokines/metabolism
11.
Genet Med ; 24(10): 2194-2203, 2022 10.
Article En | MEDLINE | ID: mdl-36001086

PURPOSE: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. METHODS: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. RESULTS: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. CONCLUSION: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration.


Mediator Complex , Microcephaly , Neurodegenerative Diseases , Animals , Humans , Homozygote , Mediator Complex/genetics , Microcephaly/genetics , Neurodegenerative Diseases/genetics , RNA , Zebrafish/genetics
12.
Front Mol Biosci ; 9: 945808, 2022.
Article En | MEDLINE | ID: mdl-35911958

Antibodies have become the Swiss Army tool for molecular biology and nanotechnology. Their outstanding ability to specifically recognise molecular antigens allows their use in many different applications from medicine to the industry. Moreover, the improvement of conventional structural biology techniques (e.g., X-ray, NMR) as well as the emergence of new ones (e.g., Cryo-EM), have permitted in the last years a notable increase of resolved antibody-antigen structures. This offers a unique opportunity to perform an exhaustive structural analysis of antibody-antigen interfaces by employing the large amount of data available nowadays. To leverage this factor, different geometric as well as chemical descriptors were evaluated to perform a comprehensive characterization.

13.
Orphanet J Rare Dis ; 17(1): 286, 2022 07 19.
Article En | MEDLINE | ID: mdl-35854306

BACKGROUND: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive. METHODS: We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. RESULTS: Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. CONCLUSIONS: This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.


Zellweger Syndrome , Genetic Association Studies , Humans , Membrane Proteins/genetics , Mutation/genetics , Peroxisomes/genetics , Peroxisomes/pathology , Zellweger Syndrome/genetics , Zellweger Syndrome/pathology
14.
Bioorg Med Chem Lett ; 72: 128860, 2022 09 15.
Article En | MEDLINE | ID: mdl-35724925

In our continuing effort to develop novel sigma receptor (SR) ligands, we present the design, synthesis and binding studies of a small library of aminopropylcarboxamide derivatives, obtained from a deconstruction of the piperidine ring of previously synthesized piperidine-based compounds. The best results were achieved with benzofuran (5c, 5g) and quinoline (5a, 5e) derivatives. These compounds revealed the highest affinity for both receptor subtypes. In particular, the 3,4-dimethoxyphenyl derivatives 5e and 5g showed the highest selectivity profile for S2R, especially the quinoline derivative 5e exhibited a 35-fold higher affinity for S2R subtype. The cytotoxic activity of aforementioned compounds was evaluated against SKBR3 and MCF7 cell lines, widely used for breast cancer studies. Whereas the potency of 5g was similar that of Siramesine and Haloperidol in both cell lines, compounds 5a, 5c and 5e exhibited a potency at least comparable to that of Haloperidol in SKBR3 cells. A molecular modelling evaluation towards the S2R binding site, confirmed the strong interaction of compound 5e thus justifying its highest S2R affinity.


Quinolines , Receptors, sigma , Haloperidol , Ligands , Piperidines , Quinolines/pharmacology , Receptors, sigma/metabolism , Structure-Activity Relationship
15.
Methods Mol Biol ; 2405: 335-359, 2022.
Article En | MEDLINE | ID: mdl-35298821

Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.


Molecular Dynamics Simulation , Peptides , Peptides/chemistry , Solvents
16.
ChemSusChem ; 15(9): e202102657, 2022 May 06.
Article En | MEDLINE | ID: mdl-35199480

The lipase-catalyzed polycondensation of azelaic acid and glycerol is investigated according to a Design-of-Experiment approach that helps to elucidate the effect of experimental variables on monomer conversion, Mn and regioselectivity of acylation of glycerol. Chemometric analysis shows that after 24 h the reaction proceeds regardless of the presence of the enzyme. Accordingly, the biocatalyst was removed after a first step of synthesis and the chain elongation continued at 80 °C. That allowed the removal of the biocatalyst and the preservation of its activity: pre-requites for efficient applicability at industrial scale. The experimental study, combined with docking-based computational analysis, provides rational guidelines for the optimization of the regioselective acylation of glycerol. The process is scaled up to 73.5 g of monomer. The novelty of the present study is the rigorous control of the reaction conditions and of the integrity of the immobilized biocatalyst, which serve to avoiding any interference of free enzyme or fines released in the reaction mixture. The quantitative analysis of the effect of experimental conditions and the overcoming of some major technical bottlenecks for the scalability of enzymatic polycondensation opens new scenarios for industrial exploitation.


Glycerol , Lipase , Biocatalysis , Enzymes, Immobilized/metabolism , Fungal Proteins/metabolism , Lipase/metabolism
17.
Int J Biol Macromol ; 194: 24-31, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34863830

Twist1 promote the bypass of p53 response by interacting with p53 and facilitating its MDM2-mediated degradation. We reasoned that reagents able to interfere with the p53:Twist1 complex might alleviate Twist1 inhibitory effect over p53, thus representing potential therapeutic tools in p53 wild type tumors. From a pre-immune library of llama nanobodies (VHH), we isolated binders targeting the p53 C-terminal region (p53-CTD) involved in the interaction with Twist1 by using recombinant Twist1 as an epitope-specific competitor during elution. Positive hits were validated by proving their capacity to immunoprecipitate p53 and to inhibit Twist1:p53 binding in vitro. Molecular modeling confirmed a preferential docking of positive hits with p53-CTD. D11 VHH activity was validated in human cell models, succeeded in immunoprecipitating endogenous p53 and, similarly to Twist1 knock-down, interfered with p53 turnover, p53 phosphorylation at Serine 392 and affected cell viability. Despite the limited functional effect determined by D11 expression in target cells, our results provide the proof of principle that nanobodies ectopically expressed within a cell, have the capacity to target the assembly of the pro-tumorigenic Twist1:p53 complex. These results disclose novel tools for dissecting p53 biology and lay down the grounds for the development of innovative targeted therapeutic approaches.


Single-Domain Antibodies/chemistry , Tumor Suppressor Protein p53/chemistry , Twist-Related Protein 1/chemistry , Binding, Competitive , Cell Line , Epitopes/chemistry , Epitopes/immunology , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Twist-Related Protein 1/metabolism
18.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Article En | MEDLINE | ID: mdl-36615988

Herein, we report on a smart biosensing platform that exploits gold nanoparticles (AuNPs) functionalized through ssDNA self-assembled monolayers (SAM) and the DNA-directed immobilization (DDI) of DNA-protein conjugates; a novel, high-sensitivity optical characterization technique based on a miniaturized gel electrophoresis chip integrated with online thermal lens spectrometry (MGEC-TLS), for the high-sensitivity detection of antigen binding events. Specifically, we characterized the physicochemical properties of 20 nm AuNPs covered with mixed SAMs of thiolated single-stranded DNA and bio-repellent molecules, referred to as top-terminated oligo-ethylene glycol (TOEG6), demonstrating high colloidal stability, optimal binder surface density, and proper hybridization capacity. Further, to explore the design in the frame of cancer-associated antigen detection, complementary ssDNA fragments conjugated with a nanobody, called C8, were loaded on the particles and employed to detect the presence of the HER2-ECD antigen in liquid. At variance with conventional surface plasmon resonance detection, MGEC-TLS characterization confirmed the capability of the assay to titrate the HER2-ECD antigen down to concentrations of 440 ng/mL. The high versatility of the directed protein-DNA conjugates immobilization through DNA hybridization on plasmonic scaffolds and coupled with the high sensitivity of the MGEC-TLS detection qualifies the proposed assay as a potential, easily operated biosensing strategy for the fast and label-free detection of disease-relevant antigens.

19.
Cell Death Dis ; 13(1): 2, 2021 12 17.
Article En | MEDLINE | ID: mdl-34916483

Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our "wet" screen and used "dry" machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo ("wet") and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor ß pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.


Bleomycin/adverse effects , Drug Discovery/methods , Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays/methods , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/therapy , Lung Diseases/chemically induced , Lung Diseases/therapy , Machine Learning/standards , Myofibroblasts/metabolism , Animals , Cell Differentiation , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases/pathology , Mice , Transfection
20.
Phys Chem Chem Phys ; 23(40): 23158-23172, 2021 Oct 20.
Article En | MEDLINE | ID: mdl-34617942

Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.


Ligands , Molecular Dynamics Simulation , Muramidase/chemistry , Peptides/chemistry , Algorithms , Amino Acid Sequence , Binding Sites , Muramidase/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Binding , Spectrometry, Mass, Electrospray Ionization , Surface Plasmon Resonance
...